A Comparison of Implicit Solvers for the Immersed Boundary Equations

نویسندگان

  • Elijah P. Newren
  • Aaron L. Fogelson
  • Robert D. Guy
  • Robert M. Kirby
چکیده

Explicit time discretizations of the Immersed Boundary method are known to require small timesteps to maintain stability. A number of implicit methods have been introduced to alleviate this restriction to allow for a more efficient method, but many of these methods still have a stability restriction on the timestep. Furthermore, almost no comparisons have appeared in the literature of the relative computational costs of the implicit methods and the explicit method. A recent paper [E.P. Newren, A.L. Fogelson, R.D. Guy, and R.M. Kirby, Unconditionally Stable Discretizations of the Immersed Boundary Equations, Journal of Computational Physics, Vol. 222,702-719 (2007)] addressed the confusion over stability of Immersed Boundary discretizations. This paper identified the cause of instability in previous Immersed Boundary discretizations as lack of conservation of energy and introduced a new semi-implicit discretization proven to be unconditionally stable, i.e., it has bounded discrete energy. The current paper addresses the issue of the efficiency of the implicit solvers. Existing and new methods to solve implicit Immersed Boundary equations are described. Systematic comparisons of computational cost are presented for a number of these solution methods for our stable semi-implicit Immersed Boundary discretization and an explicit discretization for two distinct test problems. These comparisons show that two of the implicit methods are at least competitive with the explicit method on one test problem and outperform it on the other test problem in which the elastic stiffness of the boundary does not dictate the timescale of the fluid motion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric multigrid for an implicit-time immersed boundary method

The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the structure and Eulerian variables to describe the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and...

متن کامل

Removing the Stiffness of Elastic Force from the Immersed Boundary Method for the 2D Stokes Equations

The Immersed Boundary method has evolved into one of the most useful computational methods in studying fluid structure interaction. On the other hand, the Immersed Boundary method is also known to suffer from a severe timestep stability restriction when using an explicit time discretization. In this paper, we propose several efficient semiimplicit schemes to remove this stiffness from the Immer...

متن کامل

An efficient semi-implicit immersed boundary method for the Navier-Stokes equations

The Immersed Boundary method is one of the most useful computational methods in studying fluid structure interaction. On the other hand, the Immersed Boundary method is also known to require small time steps to maintain stability when solved with an explicit method. Many implicit or approximately implicit methods have been proposed in the literature to remove this severe time step stability con...

متن کامل

A multigrid method for a model of the implicit im- mersed boundary equations

Explicit time stepping schemes for the immersed boundary method require very small time steps in order to maintain stability. Solving the equations that arise from an implicit discretization is difficult. Recently, several different approaches have been proposed, but a complete understanding of this problem is still emerging. A multigrid method is developed and explored for solving the equation...

متن کامل

A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows

Abstract   The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007